Parallel magnetic resonance imaging with adaptive radius in k-space (PARS): constrained image reconstruction using k-space locality in radiofrequency coil encoded data.

نویسندگان

  • Ernest N Yeh
  • Charles A McKenzie
  • Michael A Ohliger
  • Daniel K Sodickson
چکیده

A parallel image reconstruction algorithm is presented that exploits the k-space locality in radiofrequency (RF) coil encoded data. In RF coil encoding, information relevant to reconstructing an omitted datum rapidly diminishes as a function of k-space separation between the omitted datum and the acquired signal data. The proposed method, parallel magnetic resonance imaging with adaptive radius in k-space (PARS), harnesses this physical property of RF coil encoding via a sliding-kernel approach. Unlike generalized parallel imaging approaches that might typically involve inverting a prohibitively large matrix for arbitrary sampling trajectories, the PARS sliding-kernel approach creates manageable and distributable independent matrices to be inverted, achieving both computational efficiency and numerical stability. An empirical method designed to measure total error power is described, and the total error power of PARS reconstructions is studied over a range of k-space radii and accelerations, revealing "minimal-error" conditions at comparatively modest k-space radii. PARS reconstructions of undersampled in vivo Cartesian and non-Cartesian data sets are shown and are compared selectively with traditional SENSE reconstructions. Various characteristics of the PARS k-space locality constraint (such as the tradeoff between signal-to-noise ratio and artifact power and the relationship with iterative parallel conjugate gradient approaches or nonparallel gridding approaches) are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

Accelerating Magnetic Resonance Imaging by Unifying Sparse Models and Multiple Receivers

Magnetic resonance imaging (MRI) is an increasingly versatile diagnostic tool for a variety of medical purposes. During a conventional MRI scan, samples are acquired along a trajectory in the spatial Fourier transform domain (called k-space) and the image is reconstructed using an inverse discrete Fourier transform. The affordability, availability, and applications of MRI remain limited by the ...

متن کامل

Superresolution parallel magnetic resonance imaging: Application to functional and spectroscopic imaging

Standard parallel magnetic resonance imaging (MRI) techniques suffer from residual aliasing artifacts when the coil sensitivities vary within the image voxel. In this work, a parallel MRI approach known as Superresolution SENSE (SURE-SENSE) is presented in which acceleration is performed by acquiring only the central region of k-space instead of increasing the sampling distance over the complet...

متن کامل

Parallel Magnetic Resonance Imaging as Approximation in a Reproducing Kernel Hilbert Space.

In Magnetic Resonance Imaging (MRI) data samples are collected in the spatial frequency domain (k-space), typically by time-consuming line-by-line scanning on a Cartesian grid. Scans can be accelerated by simultaneous acquisition of data using multiple receivers (parallel imaging), and by using more efficient non-Cartesian sampling schemes. To understand and design k-space sampling patterns, a ...

متن کامل

Estimating Absolute-Phase Maps Using ESPIRiT and Virtual Conjugate Coils

PURPOSE To develop an ESPIRiT-based method to estimate coil sensitivities with image phase as a building block for efficient and robust image reconstruction with phase constraints. THEORY AND METHODS ESPIRiT is a new framework for calibration of the coil sensitivities and reconstruction in parallel magnetic resonance imaging. Applying ESPIRiT to a combined set of physical and virtual conjugat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Magnetic resonance in medicine

دوره 53 6  شماره 

صفحات  -

تاریخ انتشار 2005